skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sunden, Kyle F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Frequency domain nonlinear spectroscopies are a useful probe of linear and non-linear transitions in a variety of biological, chemical, and materials systems. They require scanning of optical parametric amplifiers (OPAs). Each OPA contains multiple motors that move to prerecorded positions to optimize output at each desired color. OPA optimization and color accuracy are crucial for frequency domain experiments, where OPA color is scanned. Such performance is highly sensitive to environmental fluctuations, so motor positions must be regularly optimized and tuned. Despite the widespread availability of motorized OPAs, this frequent maintenance can make frequency domain spectroscopy a cumbersome and time-consuming process. We have found that fully automated approaches to tuning are invaluable when scanning OPAs. Here, we report four algorithms that accurately and robustly tune a variety of ultrafast laser systems—picosecond and femtosecond, homebuilt and commercial OPAs. Using case studies from previously published work, we illustrate how these four algorithms can be combined to tune all motors of an ultrafast laser system. These algorithms are available through open-source software and can be applied to existing instruments, significantly lowering the threshold for executing frequency domain spectroscopy. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026
  2. Modern instrumentation development often involves the incorporation of many dissimilar hardware peripherals into a single unified instrument. The increasing availability of modular hardware has brought greater instrument complexity to small research groups. This complexity stretches the capability of traditional, monolithic orchestration software. In many cases, a lack of software flexibility leads creative researchers to feel frustrated, unable to perform experiments they envision. Herein, we describe Yet Another acQuisition (yaq), a software project defining a new standardized way of communicating with diverse hardware peripherals. yaq encourages a highly modular approach to experimental software development that is well suited to address the experimental flexibility needs of complex instruments. yaq is designed to overcome hardware communication barriers that challenge typical experimental software. A large number of hardware peripherals are already supported, with tooling available to expand support. The yaq standard enables collaboration among multiple research groups, increasing code quality while lowering development effort. 
    more » « less